Project Name: Soils of the Lower Macquarie Valley, New South Wales

Project Code: Macquarie Site ID: 217 Observation ID: 1

Agency Name: CSIRO Division of Soils (ACT)

Site Information

Desc. By: N.J. McKenzie Locality:

Date Desc.: Elevation: 17/06/85 No Data Sheet No.: 8534 1:10000 Map Ref.: Rainfall: No Data Northing/Long.: 6463833 AMG zone: 55 Runoff: Verv slow Poorly drained Easting/Lat.: 603000 Datum: AGD66 Drainage:

<u>Geology</u>

ExposureType: Soil pit Conf. Sub. is Parent. Mat.: No Data

Geol. Ref.: No Data Substrate Material: No Data

Land Form

Rel/Slope Class:No DataPattern Type:No DataMorph. Type:Open depression (vale)Relief:No DataElem. Type:No DataSlope Category:No DataSlope:%Aspect:No Data

Surface Soil Condition (dry): Cracking, Firm

Erosion:

Soil Classification

ASC Confidence:

Australian Soil Classification:Mapping Unit:GIN GINN/AAEOLIAN

DEPOSITS

Principal Profile Form: Ug5.38
Great Soil Group: N/A

Confidence level not specified

Site Disturbance: Complete clearing. Pasture, native or improved, cultivated at some stage

Vegetation:

Tall Strata - Tussock grass, 0.26-0.5m, Sparse. *Species includes - None Recorded

Surface Coarse Fragments:

Profile Morphology

A1 0 - 0.26 m Dark reddish brown (5YR3/4-Moist); ; Medium clay; Moderate grade of structure, 10-20 mm,

Polyhedral; Rough-ped fabric; Fine, (0 - 5) mm crack; Few (<1 per 100mm2) Very fine (0.075-1mm) macropores, Few (<1 per 100mm2) Fine (1-2mm) macropores, Few (<1 per 100mm2) Medium (2-5mm) macropores, Moderately moist; Firm consistence; Field pH 7 (Raupach); Many, very fine (0-1mm) roots; Many, fine (1-2mm) roots; Many, medium (2-5mm) roots; Clear, Smooth

change to -

B21k 0.26 - 0.7 m Yellowish red (5YR4/5-Moist); ; Heavy clay; Strong grade of structure, 20-50 mm, Angular

blocky; Smooth-ped fabric; Medium, (5 - 10) mm crack; Few (<1 per 100mm2) Very fine (0.075-1mm) macropores, Few (<1 per 100mm2) Fine (1-2mm) macropores, Dry; Very firm consistence; Common cutans, 10-50% of ped faces or walls coated; Many (20 - 50%), Calcareous, Coarse (6 - 20 mm), Nodules; Field pH 9 (Raupach); Common, very fine (0-1mm) roots; Common, fine (1-2mm) roots; Common, medium (2-5mm) roots; Gradual, Smooth change

B22 0.7 - 1.1 m Yellowish red (5YR4/5-Moist); ; Heavy clay; Strong grade of structure, 20-50 mm, Angular

blocky; Smooth-ped fabric; Fine, (0 - 5) mm crack; Few (<1 per 100mm2) Very fine (0.075-1mm) macropores, Dry; Very firm consistence; Common cutans, 10-50% of ped faces or walls coated; Common (10 - 20 %), Calcareous, Coarse (6 - 20 mm), Nodules; Field pH 8.5 (Raupach);

Few, very fine (0-1mm) roots; Gradual, Smooth change to -

B23 1.1 - 1.35 m Yellowish red (5YR4/6-Moist); , 7.5YR64, 20-50% , 5-15mm, Distinct; Heavy clay; Moderate

grade of structure, 20-50 mm, Polyhedral; Rough-ped fabric; Few (<1 per 100mm2) Very fine (0.075-1mm) macropores, Moderately moist; Firm consistence; Few cutans, <10% of ped faces or walls coated; Many (20 - 50 %), Calcareous, Coarse (6 - 20 mm), Nodules; Many (20 - 50 %), Gypseous, Medium (2 -6 mm), Crystals; Field pH 8.5 (Raupach); Few, very fine (0-1mm)

Morphological Notes

A1 Virtually the same as site 211 (compare with Baker's and Gin Gin)

Observation Notes

Buddah Soil Profile Class

Site Notes

Project Name: Project Code: Agency Name: Soils of the Lower Macquarie Valley, New South Wales Macquarie Site ID: 217 Observation CSIRO Division of Soils (ACT) Observation ID: 1

Laboratory Test Results:

Euboratory rest results.										
рН	1:5 EC						CEC	E	CEC	ESP
	dS/m		9							%
7.7A		15.4E	5.4	1.5	0.5			2	2.8D	
9A 7.7A	0.817A 4.1A	7.8E	9	0.3	4.7			2	1.8D	
CaCO3	-	Avail. P	Total P	Total N	Total K		Pa GV	article S		alysis Silt Clay
%	%	mg/kg	%	%	%	Mg/m3			%	
						1.35 1.45 1.46 1.48		8.8A 10.9A	25 26.8	8.1 58.1 10.1 52.2
COLE	Sat						K sat K unsa		unsat	
	Jai.	0.03 Bai				J Dai	IJ Dai	mm/h	n r	nm/h
0.1A 0.114	Ą		0.3G 0.27G 0.26G 0.27G			(0.18D 0.17D			
	7.7A 9A 9A 7.7A CaCO3 % COLE	pH 1:5 EC dS/m 7.7A 0.144A 9A 0.22A 9A 0.817A 7.7A 4.1A CaCO3 Organic C % %	PH 1:5 EC Excl dS/m 7.7A 0.144A 15.4E 9A 0.22A 9A 0.817A 7.8E 7.7A 4.1A CaCO3 Organic Avail. C P mg/kg COLE Grav Sat. 0.05 Bar 0.102A 0.1A 0.114A	pH 1:5 EC dS/m Exchangeable Mg Ca Mg Ca Mg Ca Mg dS/m 7.7A 0.144A 15.4E 5.4 9A 0.22A 9A 0.817A 7.8E 9 7.7A 4.1A 7.8E 9 7 CaCO3 Organic C P P P P Mg/kg N N COLE Sat. 0.05 Bar 0.1 Bar g/kg 0.1 Bar g/kg 0.102A 0.1A 0.27G 0.114A 0.27G 0.26G	PH	pH 1:5 EC Exchangeable Cations Ca Mg K Na Cmol (+) 7.7A 0.144A 15.4E 5.4 1.5 0.5 9A 0.22A 9A 0.817A 7.8E 9 0.3 4.7 7.7A 4.1A Total Total Total Total Total CaCO3 Organic Avail. Total Total Total Total % % % % % % % COLE P P N K % W % mg/kg % % % COLE Sat. 0.05 Bar 0.1 Bar 0.5 Bar 1 Bar g/g - m3/m3 1 Bar 0.2 Mark 0.2 Mark 0.27G 0.114A 0.26G 0.26G 0.26G 0.26G	PH	PH	PH	PH

Soils of the Lower Macquarie Valley, New South Wales **Project Name:**

Project Code: Macquarie Site ID: Observation ID: 1 217

Agency Name: **CSIRO** Division of Soils (ACT)

Laboratory Analyses Completed for this profile

15C1_CA Exchangeable bases (Ca2+,Mg2+,Na+,K+) - alcoholic 1M ammonium chloride at pH 8.5, pretreatment

for soluble salts

15C1_K Exchangeable bases and CEC - alcoholic 1M ammonium chloride at pH 8.5, pretreatment for soluble

salts

15C1 MG Exchangeable bases and CEC - alcoholic 1M ammonium chloride at pH 8.5, pretreatment for soluble

salts

15C1_NA Exchangeable bases and CEC - alcoholic 1M ammonium chloride at pH 8.5, pretreatment for soluble

salts

15J_BASES Sum of Bases

EC of 1:5 soil/water extract 3A1 4A1 pH of 1:5 soil/water suspension

Clay (%) - Coventry and Fett pipette method

P10_CF_C P10_CF_CS P10_CF_FS Coarse sand (%) - Coventry and Fett pipette method Fine sand (%) - Coventry and Fett pipette method P10_CF_Z Silt (%) - Coventry and Fett pipette method

P3A1 Bulk density - g/cm3

P3B1GV_15 15 BAR Moisture g/g - Gravimetric of ground sample (<2mm) using pressure plate

P3B4GV_01 0.1 BAR Moisture g/g - Gravimetric of soil clods (Soil Survey Staff, 1967)

P5_COLE Coefficient of Linear Extensibility (Grossman et al. 1968)